Genomic and Gene-Level Distribution of Histone H3 Dimethyl Lysine-27 (H3K27me2) in Arabidopsis

نویسندگان

  • Sunchung Park
  • Sookyung Oh
  • Steve van Nocker
چکیده

Histone lysine methylation patterns underlie much of the functional diversity of nucleosomes in eukaryotes, and an interesting aspect of histone methylation is the potential functional specificity for different methylation states on a given lysine. Trimethylation of histone H3 (H3K27me3) is intimately related to developmental gene silencing through the so-called Polycomb Group (PcG) mechanism. How this modification becomes established at PcG-repressed loci is generally not known, but it has been suggested that it may be facilitated by prior occupancy by H3K27me2. In this study we mapped the genomic and gene-level distribution of H3K27me2 in Arabidopsis thaliana using ChIP and a high-density tiling microarray, and integrated this with previous maps of other chromatin features and gene expression data. At the genome level, H3K27me2 enrichment sites were sparsely distributed across chromosomes, within an average size expected for a single nucleosome, and contrasted with the longer domains seen for H3K27me3. In both heterochromatic and euchromatic segments of the genome, H3K27me2 enrichment was often localized within transposon-related genes, with the longest genomic stretches of this modification corresponding to retroelements. However, H3K27me2 was more frequently found within protein-coding genes. These genes generally also showed moderate enrichment for H3K27me3, but H3K27me2 was strongly depleted within those genes most enriched in H3K27me3. H3K27me2 within highly transcribed genes was at highest levels at transcriptional starts and was strongly depleted throughout the transcribed regions, and reached higher levels at active than at silent promoters.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partitioning of the maize epigenome by the number of methyl groups on histone H3 lysines 9 and 27.

We report a detailed analysis of maize chromosome structure with respect to seven histone H3 methylation states (dimethylation at lysine 4 and mono-, di-, and trimethylation at lysines 9 and 27). Three-dimensional light microscopy and the fine cytological resolution of maize pachytene chromosomes made it possible to compare the distribution of individual histone methylation events to each other...

متن کامل

Cancer Biology and Signal Transduction A687V EZH2 Is a Driver of Histone H3 Lysine 27 (H3K27) Hypertrimethylation

The EZH2 methyltransferase silences gene expression through methylation of histone H3 on lysine 27 (H3K27). Recently, EZH2mutations have been reported at Y641, A677, and A687 in non-Hodgkin lymphoma. Although the Y641F/N/S/H/C and A677G mutations exhibit clearly increased activity with substrates dimethylated at lysine 27 (H3K27me2), the A687Vmutant has been shown to prefer a monomethylated lys...

متن کامل

A687V EZH2 is a driver of histone H3 lysine 27 (H3K27) hypertrimethylation.

The EZH2 methyltransferase silences gene expression through methylation of histone H3 on lysine 27 (H3K27). Recently, EZH2 mutations have been reported at Y641, A677, and A687 in non-Hodgkin lymphoma. Although the Y641F/N/S/H/C and A677G mutations exhibit clearly increased activity with substrates dimethylated at lysine 27 (H3K27me2), the A687V mutant has been shown to prefer a monomethylated l...

متن کامل

Polycomb-dependent H3K27me1 and H3K27me2 regulate active transcription and enhancer fidelity.

H3K27me3 is deposited at promoters by the preferential association of Polycomb repressive complex 2 (PRC2) with CpG-rich DNA elements regulating development by repressing gene transcription. H3K27 is also present in mono- and dimethylated states; however, the functional roles of H3K27me1 and H3K27me2 deposition remain poorly characterized. Here, we show that PRC2 activity is not only associated...

متن کامل

The H3K27me3 demethylase UTX in normal development and disease

In 2007, the Ubiquitously Transcribed Tetratricopeptide Repeat on chromosome X (UTX) was identified as a histone demethylase that specifically targets di- and tri-methyl groups on lysine 27 of histone H3 (H3K27me2/3). Since then, UTX has been proven essential during normal development, as it is critically required for correct reprogramming, embryonic development and tissue-specific differentiat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012